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1 Introduction

Collider phenomenology and the anti de Sitter/conformal field theory (AdS/CFT) corre-

spondence [1–3] have motivated numerous investigations of scattering amplitudes in gauge

and gravitational theories in recent years. In this context, the study of theN = 4 supersym-

metric Yang-Mills theory has been particularly successful since it is possible to investigate

loop corrections by only evaluating a reduced set of master topologies [4]. These results for

N = 4 SUSY can then be used to also obtain amplitudes in N = 8 supergravity, where the

set of minimal topologies is still valid, and to address the question of the renormalizability

of the theory at higher orders [5, 6]. This procedure is based on a conjectured double-copy

structure of gravity [7] which has recently been applied to N = 4, 5, 6 supergravities at

two-loops [8]. In Einstein-Hilbert gravity progress is slower [9–11] since supersymmetry or

string theory based techniques [12–14] cannot help.

It is also possible to get important information of the all-orders structure of scattering

amplitudes when they are considered in certain kinematical regions. An interesting example

is the study of graviton scattering in multi-Regge kinematics (MRK). In this case the

amplitudes present a factorized form which can be interpreted in terms of the exchange

of reggeized gravitons [15, 16] together with eikonal and double-logarithmic terms [17–19].

These contributions, together with new interaction vertices, can be described by means of

a high energy effective action [20]. It is noteworthy that the graviton emission vertex in

MRK can be written as a double copy of the corresponding [21–25] QCD gluon emission

vertex [17–19, 26].

In the present work double-logarithmic in energy contributions to four-graviton scat-

tering to all orders in the gravitational coupling will be evaluated. This will be done for

arbitrary supergravities as well as for Einstein-Hilbert gravity. We will improve previous

results based on the resummation of ladder-like diagrams by considering the full set of

contributing topologies. The truncation of our results to two loops is in agreement with

recent calculations in the literature for N = 4, 5, 6, 8 supergravities. The all-orders resum-

mation of these contributions generates amplitudes which grow with energy when N < 4
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and asymptotically tend to zero when N > 4. N = 4 supergravity corresponds to a critical

theory where the leading double-logarithmic contributions cancel.

2 Double-logarithmic approximation

For our analysis it is convenient to define the following normalization for the four-point

amplitudes

A4,(N) = ABorn
4 M4,(N) , (2.1)

ABorn
4 = κ2

s3

tu
, (2.2)

M4,(N) = 1 +
∞∑

L=1

M(L)
4,(N) , (2.3)

where L corresponds to the loop order and N labels the number of gravitinos in the theory.

The Mandelstam invariants are s = (p1+p2)
2, t = (p1−p3)

2 and u = (p1−p4)
2. κ2 = 8πG,

with G being the Newton’s constant.

2.1 One-loop amplitudes

When the one loop amplitude M(1)
4,(N) is calculated in the Regge limit (with s ≫ −t = |q|2)

the graviton Regge trajectory [17–19]

ω(q) =
α|q|2
π

∫
d2k

|k|2|q − k|2






(

~k, ~q − ~k
)2

|k|2 +

(

~k, ~q − ~k
)2

|q − k|2 − |q|2 + N

2

(

~k, ~q − ~k
)




 (2.4)

appears multiplied by ln (s/|q|2). We have used the notation α = κ2/(8π2). This expression

contains both infrared and ultraviolet divergencies which can be regulated by, respectively,

the cut-offs λ and Λ, to obtain

ω(q) = −α |q|2
(

ln
|q|2
λ2

+
N − 4

2
ln

Λ2

|q|2
)

. (2.5)

The ultraviolet divergence at Λ → ∞ is not fundamental because gravity is renormalizable

at one loop. It has a kinematical origin which means that the parameter Λ should be

substituted by
√
s, leading to the appearance of the double-logarithmic term ∼ α ln2 s in

the elastic scattering amplitude.

To understand this point in more detail, let us recall that the one loop contribution at

high energies can be obtained making use of the Sudakov parametrization for the virtual

particle momentum,

k = β p1 + αp2 + k⊥ , d4k =
|s|
2

dα dβ d2k⊥ , (2.6)

where p1 and p2 are the momenta of the colliding particles. Calculating the Feynman inte-

gral over α by residues we obtain with leading logarithmic accuracy the following expression

A(1)
4 (s, t) ∼ 1

π

∫
d2k⊥
|k⊥|2

∫ s

|q|2

d(βs)

βs− |k⊥|2
. (2.7)
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It is then clear that the ultraviolet divergence at |k⊥| → ∞ is absent. In the infrared

region of integration |k2⊥| ≪ |q|2 the above expression factorizes in the form A(1)
4 ∼

ln
(
|q|2/λ2

)
ln
(
s/|q|2

)
. This Regge factor containing the infrared divergence can be ex-

tracted to all orders in perturbation theory and the amplitude with double-logarithmic

accuracy can be conveniently presented using the following Mellin transform:

A4,(N)(s, t) = ABorn
4

(
s

|q|2
)−α|q|2 ln

|q|2

λ2
∫ δ+i∞

δ−i∞

dω

2πi

(
s

|q|2
)ω f

(N)
ω

ω
, δ > 0 , (2.8)

where the tree level amplitude is ABorn
4 ≃ κ2s2/|q|2 and the integral over ω contains the

contribution of the virtual gluons and gluinos only with |k⊥|2 > |q|2. The t-channel partial
wave f

(N)
ω in the double-logarithmic approximation can be expanded order by order in

perturbation theory,

f (N)
ω =

∞∑

n=0

c(N)
n

(
b

ω2

)n

, (2.9)

where b is the dimensionless parameter

b = α|q|2 . (2.10)

In ref. [17] one of the authors of this work (L.N.L.) made the assumption that double-

logarithmic contributions in gravity appear only from ladder diagrams, which allowed him

to obtain a closed expression for the scattering amplitude in terms of a Bessel function.

However, even in simpler field theories like QED and QCD there is another source of

double-logarithmic terms. For example, in e+e− backward scattering the diagrams with

virtual soft photons emitted and absorbed by the external fermions are essential. These

contributions contain, apart from the integration region |k⊥|2 > |q|2, the universal infrared
divergencies from the region |k⊥|2 ≪ |q|2 in the form of eq. (2.7). It is then natural to

realize that similar non-ladder contributions also play a role in gravity. At one loop they

would lead to the following correction to the elastic amplitude

A(1)
4,soft

ABorn
4

= −b

∫ s

λ2

d|k⊥|2
|k⊥|2

∫ s

|q|2

d(βs)

βs− |k⊥|2

= −b ln
s

|q|2
(

ln
|q|2
λ2

+
1

2
ln

s

|q|2
)

, (2.11)

which, together with the corresponding ladder correction (including gravitino

contributions),

A(1)
4,ladder

ABorn
4

= −b

(
N − 6

4

)

ln2
s

|q|2 (2.12)

generate the complete one loop correction (cf. eq. (2.5)):

A(1)
4,(N)

ABorn
4

= −b ln
s

|q|2
(

ln
|q|2
λ2

+

(
N − 4

4

)

ln
s

|q|2
)

. (2.13)
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To better understand this result let us now compare it to the exact one-loop amplitudes

available in the literature. In ref. [8] Boucher-Veronneau and Dixon used a conjectured

double-copy structure of gravity to evaluate four-point scattering amplitudes at two loops

in N = 4, 5, 6 supergravities. They also calculated again the well-known N = 8 case.

For N = 8 it is possible to write the exact one-loop amplitude (using s+ t+ u = 0) in

the form

M(1)
4,(N=8) = α t ln

(−s

−t

)

ln

(−u

−t

)

︸ ︷︷ ︸

Double Logs

+ α
t

2
ln

(−t

λ2

)(

ln

(−s

−t

)

+ ln

(−u

−t

))

︸ ︷︷ ︸

Trajectory

− α
(s− u)

2
ln

(−t

λ2

)

ln

(−s

−u

)

︸ ︷︷ ︸

Eikonal

. (2.14)

We have indicated the terms which will generate, in the Regge limit (s ≃ −u), the double-

logarithms, the graviton trajectory and the eikonal pieces.

Following ref. [8] it is possible to relate the previous expression to the N = 4, 5, 6

supergravity amplitudes, i.e.

M(1)
4,(N=4) = M(1)

4,(N=8) + α t
1

2

u

s

{(

2− u t

s2

)(

ln2
(−u

−t

)

+ π2

)

+ 1 +

(
s− u

s

)

ln

(−t

s

)

+

(
u− t

s

)

ln

(−u

s

)}

, (2.15)

M(1)
4,(N=5) = M(1)

4,(N=8) + α t
3

4

u

s

(

ln2
(−u

−t

)

+ π2

)

, (2.16)

M(1)
4,(N=6) = M(1)

4,(N=8) + α t
1

2

u

s

(

ln2
(−u

−t

)

+ π2

)

. (2.17)

From the work of Dunbar and Norridge in ref. [12] we also know the one-loop amplitude

in Einstein-Hilbert gravity (N = 0):

M(1)
4,(N=0) = M(1)

4,(N=8) + α t
1

2

u

s
G
(−t

s

)

, (2.18)

with

G(x) =
(
4− 10x+ 2x2 + 15x3 − 5x4 − 3x5 + x6

)

×
{

ln2 (x) + 2x ln (x) + π2 +

∞∑

n=2

xn

(

2

n
ln (x) +

n−1∑

l=1

1

l(n− l)

)}

+

(
341

30
− 437

30
x− 47

2
x2 +

37

3
x3 + 5x4 − 2x5

)(

ln (x) +
∞∑

n=1

xn

n

)

+
961

90
+

97

12
x− 85

12
x2 − 2x3 + x4. (2.19)
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Using these expressions we can see that the double-logarithmic contributions to these am-

plitudes can be written in the form

M(1),DL
4,(N) =

(
N − 4

2

)(
α t

2

)

ln2
(

s

−t

)

, (2.20)

in agreement with our result in eq. (2.13).

2.2 All-loop amplitudes

Since the sources for the double-logarithmic contributions in gravity are the same as in

gauge theories (see refs. [27–29] for related calculations in QED and QCD), it is possible

to write a similar infrared evolution equation for the partial wave introduced in eq. (2.8),

namely,

f (N)
ω = 1 + b

d

dω

f
(N)
ω

ω
− b

(
N − 6

2

)
f
(N)
ω

2

ω2
, (2.21)

which, in pictorial terms, stems from the equation

= +2 +2 + . (2.22)

At the right hand side of eq. (2.21) the first term proportional to b describes the contri-

bution of the virtual graviton with the smallest value of k⊥. The second (ladder) term

describes the contribution from the pair with the two softest gravitons or gravitinos ex-

changed in the t-channel. Let us indicate that, generally, the emission of the virtual soft

graviton with transverse momentum k⊥ changes the momentum transfer (q → q − k) for

the basic scattering process, and hence modifies the power factors |q|2n → |q − k|2n of the

corresponding amplitude in each order of perturbation theory. Nevertheless, it is correct

to neglect the corrections ∼ k⊥ because these terms cancel the logarithmic contribution

appearing from the integration over k⊥.
It is important to indicate that the coefficients of eq. (2.21) in front of the two terms

proportional to b are chosen in such a way as to reproduce the one loop contribution

calculated in eq. (2.13). The perturbative solution of the infrared evolution equation (2.21)

has the form

f (N)
ω = 1− b(N − 4)

2w2
+

b2(N − 4)(N − 3)

2w4

− b3(N − 4)
(
5N2 − 26N + 36

)

8w6

+
b4(N − 4)

(
7N3 − 47N2 + 118N − 108

)

8w8

− b5(N − 4)
(
21N4 − 160N3 + 556N2 − 960N + 648

)

16w10
+ . . . (2.23)

which leads to the following double-logarithmic asymptotics of the elastic amplitude:

A4,(N)(s, t) = ABorn
4

(
s

|q|2
)−α|q|2 ln

|q|2

λ2

Φ(N)(ξ) , (2.24)
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where ξ = α |t| ln2 s
|q|2 and

Φ(N)(ξ) = 1− (N − 4)

2

ξ

2
+

(N − 4)

2
(N − 3)

ξ2

4!

− (N − 4)

8
(5N2 − 26N + 36)

ξ3

6!

+
(N − 4)

8

(
7N3 − 47N2 + 118N − 108

) ξ4

8!

− (N − 4)

16

(
21N4 − 160N3 + 556N2 − 960N + 648

) ξ5

10!
+ . . . . (2.25)

Before investigating in detail how the amplitudes behave at the light of this all-orders

result, let us compare its two-loop truncation with other calculations in the literature.

2.2.1 Two-loop truncation and comparison with N = 4, 5, 6, 8 results

In the notation of eq. (2.3), it is well-known that the complete two-loop amplitudes can be

written as the sum of two pieces:

M(2),N
4 = m

(2),N
4 +

1

2

(

M(1),N
4

)2
, (2.26)

where m
(2),N
4 is infrared finite and has been calculated by Boucher-Veronneau and Dixon

in ref. [8] for N = 4, 5, 6. The N = 8 case was calculated earlier in ref. [12]. We will

now present these infrared finite remainders in the Regge limit and with leading double-

logarithmic accuracy. First, it is convenient to write the exact amplitudes in the form

A4,(N) = ABorn
4

(−t

µ2

)αt(ln ( s
−t)+iπ( s

t ))

×
{

1 +

(
N − 4

2

)(
α t

2

)

ln2
(

s

−t

)

+
1

2

(
N − 4

2

)2(α t

2

)2

ln4
(

s

−t

)

+m
(2),N
4,DL + . . .

}

, (2.27)

where we have exponentiated the infrared divergent terms and singled out the non-

exponentiating double-logarithmic contributions. The latter contain those pieces related

to the one-loop result and its square, following the last term of eq. (2.26), and the m
(2),N
4,DL

contribution, which can be read off ref. [8]:

m
(2),N=4
4,DL = 0

(
α t

2

)2

ln4
(

s

−t

)

=⇒ 0, (2.28)

m
(2),N=5
4,DL =

1

24

(
α t

2

)2

ln4
(

s

−t

)

=⇒ 1

6

(
α t

2

)2

ln4
(

s

−t

)

, (2.29)

m
(2),N=6
4,DL = 0

(
α t

2

)2

ln4
(

s

−t

)

=⇒ 1

2

(
α t

2

)2

ln4
(

s

−t

)

, (2.30)

m
(2),N=8
4,DL = −1

3

(
α t

2

)2

ln4
(

s

−t

)

=⇒ 5

3

(
α t

2

)2

ln4
(

s

−t

)

. (2.31)
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At the right hand side of these expressions we have written the final double-logarithmic

contribution to the amplitude. It is important to note that these results are in complete

agreement with the two-loop truncation of our prediction for any N in eq. (2.25). Higher

order terms for different supergravities or Einstein-Hilbert gravity can be obtained from it.

This should serve as a useful test of multi-loop calculations of four-graviton amplitudes.

As an example, in N = 8 SUGRA we obtain

A4,(N=8) = ABorn
4

(−t

µ2

)αt(ln ( s
−t)+iπ( s

t ))

×
{

1 + 2

(
α t

2

)

ln2
(

s

−t

)

+
5

3

(
α t

2

)2

ln4
(

s

−t

)

+
37

45

(
α t

2

)3

ln6
(

s

−t

)

+
353

1260

(
α t

2

)4

ln8
(

s

−t

)

+
583

8100

(
α t

2

)5

ln10
(

s

−t

)

+ . . .

}

. (2.32)

Now we turn to study the high energy asymptotic behaviour of the resummed amplitudes.

2.2.2 Resummed supergravity amplitudes at high energies

In terms of double-logarithmic contributions the simplest amplitude is that of N = 4

SUGRA since their contribution adds to zero and we have the pure Regge asymptotic

behaviour

A4,(N=4)(s, t) = ABorn
4

(
s

|q|2
)−α|q|2 ln

|q|2

λ2

. (2.33)

In the case of N = 6 SUGRA eq. (2.21) can be solved in the form

f (N=6)
ω =

∫ ∞

0
d z e−z e−

z2b

2ω2 , (2.34)

obtaining the following result for the amplitude

A4,(N=6)(s, t) = ABorn
4

(
s

|q|2
)−α|q|2 ln

|q|2

λ2

exp

(

−α |q|2
2

ln2
s

|q|2
)

. (2.35)

In the general case with arbitrary N it is useful to introduce the new function y(x) and

the new variable x according to the definitions

f (N)
ω =

2x

6−N
y(N)(x) , x =

ω√
b
, (2.36)

to reduce our eq. (2.21) to the Riccati equation

y(N)′(x) + y(N)2(x)− x y(N) +
6−N

2
= 0 . (2.37)

By introducing the new function Ψ(N)(x) as follows

y(N) =
d

d x
ln

(

e
x2

4 Ψ(N)(x)

)

(2.38)

– 7 –
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we obtain for it a linear Schrödinger equation, i.e.
(

− d2

dx2
+

N − 7

2
+

x2

4

)

Ψ(N)(x) = 0 . (2.39)

For even values of N we have the following simple solutions for this equation:

Ψ
(1)
(N=8)(x) = e

x2

4 , (2.40)

Ψ
(1)
(N=6)(x) = e−

x2

4 , (2.41)

Ψ
(1)
(N=4)(x) = x e−

x2

4 , (2.42)

Ψ
(1)
(N=2)(x) =

(
1− x2

)
e−

x2

4 , (2.43)

Ψ
(1)
(N=0)(x) = x

(
3− x2

)
e−

x2

4 . (2.44)

The above solutions for N = 4, 2, 0 are physical and therefore it is possible to calculate the

following partial wave f
(N)
ω for these cases

f
(N=4)
ω

ω
=

1

ω
, (2.45)

f
(N=2)
ω

ω
=

1/2

ω +
√
b
+

1/2

ω −
√
b
, (2.46)

f
(N=0)
ω

ω
=

1/3

ω
+

1/3

ω +
√
3b

+
1/3

ω −
√
3b

. (2.47)

These poles in the ω-plane lead to the following double-logarithmic asymptotic behavior

of the corresponding scattering amplitudes:

A4,(N)(s, t) = ABorn
4

(
s

|q|2
)−α|q|2 ln

|q|2

λ2

r(N)(s, t), (2.48)

r(N)(s, t) =

∫ δ+i∞

δ−i∞

dω

2πi

(
s

−t

)ω f
(N)
ω

ω
, (2.49)

where

r(N=4)(s, t) = 1 , (2.50)

r(N=2)(s, t) =
1

2





(
s

|q|2
)
√

α|q|2
+

(
s

|q|2
)−

√
α|q|2



 , (2.51)

r(N=0)(s, t) =
1

3



1 +

(
s

|q|2
)
√

3α|q|2
+

(
s

|q|2
)−

√
3α|q|2



 . (2.52)

The second solution of the Schrödinger equation for even N can be constructed with

the use of the Wronskian for two independent solutions

Ψ
(1)
(N)

d

dx
Ψ

(2)
(N) −Ψ

(2)
(N)

d

dx
Ψ

(1)
(N) = constant . (2.53)

– 8 –
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By integrating it we obtain the physical solution for N = 8 supergravity:

Ψ(N=8)(x) = e
x2

4

∫ ∞

x

dz e−
z2

2 = e−
x2

4

∫ ∞

0
dy e−

y2

2 e−x y , (2.54)

which is proportional to the probability integral erfc(
√
2x). We can then obtain the corre-

sponding scattering amplitude in the form

r(8)(s, t) = −
∫ a+i∞

a−i∞

d x

2πi

(
s

|q|2
)x

√
b d

d x
ln

∫ ∞

0
dy e−

y2

2 e−x y . (2.55)

Generally, the physical solution of the Schrödinger eq. (2.39) can be expressed in terms

of the parabolic cylinder function

Ψ(N)(x) = D 6−N
2

(x) , Dν(x) =
e−

x2

4

Γ(−ν)

∫ ∞

0

dy

yν+1
e−

y2

2 e−x y . (2.56)

Therefore

f
(N)
ω

ω
=

2

6−N

1√
b

d

d x
ln

(
∫ ∞

0

dy

y
8−N

2

e−
y2

2 e−x y

)

, x =
ω√
b
. (2.57)

The integral over y is convergent for ν < 0. For example, for N = 7 we have

f
(7)
ω

ω
= − 2√

b

d

d x
ln

(∫ ∞

0

dy√
y
e−

y2

2 e−x y

)

, x =
ω√
b
. (2.58)

In the general case with arbitrary ν we can choose the integration contour L in the

complex plane y which goes from y = +∞, surrounds the singular point y = 0 and returns

again to y = +∞:

f
(N)
ω

ω
=

2

6−N

1√
b

d

d x
ln

(

1

2πi

∫

L

dy

(−y)
8−N

2

e−
y2

2 e−x y

)

, x =
ω√
b
. (2.59)

In particular, for N → 6 we obtain

f
(6)
ω

ω
=

1√
b

∫ ∞

0
dy e−

y2

2 e−x y =
1

ω

∫ ∞

0
d z e−z e−

z2b

2ω2 , (2.60)

which is in agreement with eq. (2.34). After differentiating over x in eq. (2.59) and taking

N = 4, 2, 0 we can also reproduce our previous results in eqs. (2.45), (2.46), (2.47).

For odd values of N and N = 8 the function Ψ(N)(x) has an infinite number of zeros

situated asymptotically close to the lines arg z = ±3
4 π. The trajectories of these Regge

poles satisfy the following equation at large n

x(N)2 ≈ −2(7−N) lnx(N) + 2π e±
3

2
πi (2n+ 1) , n = 0, 1, 2, . . . . (2.61)

For N = 1 SUGRA there are three Regge poles with the real trajectories

x
(N=1)
1 ≈ −2.460 , x

(N=1)
2 ≈ −0.452 , x

(N=1)
3 = 1.402 , (2.62)
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leading to the following growth of the scattering amplitude:

lim
s→∞

r(N=1)(s, t) ≈ 2

5

(
s

|q|2
)1.402

√
α |q|

. (2.63)

In N = 3 SUGRA there are two real Regge trajectories,

x
(N=3)
1 ≈ −1.747 , x

(N=3)
2 ≈ 0.5508 , (2.64)

also generating a growing contribution to the amplitude:

lim
s→∞

r(N=3)(s, t) ≈ 2

3

(
s

|q|2
)0.5508

√
α |q|

. (2.65)

For the case N = 5 there only exists one Regge pole with the real Regge trajectory

x
(N=5)
1 ≈ −0.762 , (2.66)

which leads to an amplitude falling with energy (together with some oscilating contributions

from the poles in the complex plane)

lim
s→∞

r(N=5)(s, t) ≈ 2

(
s

|q|2
)−0.762

√
α |q|

. (2.67)

In the cases N = 7, 8 all the poles of fω are situated in the left hand side of the complex

ω-plane and therefore r(N)(s, t) here tends to zero when s → ∞. In particular,

lim
s→∞

r(N=8)(s, t) = 2

(
s

|q|2
)−1.916

√
α|q|

cos

(

2.8164
√
α|q| ln s

|q|2
)

. (2.68)

Besides these asymptotic estimates, we have performed an exact numerical analysis of

the function r(N)(s, t) (see eq. (2.49)). For N = 0, 1, 2, 3, 4, 5, 6, 7, 8, in agreement with the

previous analysis in this section, we show the energy behaviour of the scattering amplitudes

for different supergravities in figure 1. The monotonically growing with energy solutions

for N < 4 are shown in more detail in figure 2. The critical solution at N = 4 is flat with

energy. The two monotonically decreasing with energy solutions for N = 5, 6 are given in

figure 3 and the two oscillatory and decreasing with energy ones for N = 7, 8 can be seen

in figure 4.

It is interesting to point out that the falling asymptotic behavior of the amplitudes

at s → ∞ in the N = 5, 6, 7, 8 supergravities is likely to be related to good ultraviolet

properties of these theories, including the possible renormalizability of N = 8 SUGRA.

2.2.3 Interplay between double logarithms and eikonal contributions

In this section we study the interplay between the double logarithmic terms just resummed

and the eikonal factor. In particular, we are looking for the coefficient of the term ∼
α2s t ln3

(
s
−t

)

in the two-loop amplitude of eq. (2.26) (with the Born term factorized),

which corresponds to the leading piece proportional to s. In M(2),N
4 there is another term

of the form ∼ α2s2 ln3
(−t
λ2

)
which stems from the simple exponentiation of the one-loop

amplitude.
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Figure 1. Scattering amplitude for N = 0, 1, 2, 3, 4, 5, 6, 7, 8.
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Figure 2. Scattering amplitude for N = 0, 1, 2, 3.

We can calculate these contributions writing the eikonal representation for the four

point amplitude with the exponentiated Regge-like infrared divergent factor, i.e.,

Aeik,DL(s, t) = −2is

(
s

|q|2
)−α|q|2 ln

|q|2

λ2
∫

d2~ρ ei~q·~ρ
(

eiδ(~ρ,ln s) − 1
)

, (2.69)

where the eikonal phase δ (~ρ, ln s), with double logarithmic accuracy, is given by

δ (~ρ, ln s) =
s

2

κ2

(2π)2

∫
d2~q

|~q|2
e−i~q·~ρΦ (ξ) , (2.70)
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Figure 3. Scattering amplitude for N = 5, 6.

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 6  8  10  12  14  16  18  20

r(N
) (s

,t)
, b

=
1

s/(-t)

7
8

Figure 4. Scattering amplitude for N = 7, 8.

with the perturbative expansion of Φ (ξ), for arbitrary N , written as in eq. (2.25). Within

double logarithmic accuracy, we can rewrite Aeik,DL(s, t) in the convenient form

Aeik,DL(s, t) = −2is

(
s

|q|2
)−α|q|2 ln

|q|2

λ2

(2π)2

×
∞∑

n=0

(iαs)n

n!

∫ n∏

r=1

d2~qr

|~qr|2
Φ (ξr) θ

(

s− |~qr|2
)

δ

(

~q −
n∑

l=1

~ql

)

. (2.71)

This all-orders prediction for the interplay between the eikonal factor and the double
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logarithms in energy is in agreement with the two-loop result obtained using the color-

kinematics duality of ref. [8]:

A
(2)
eik,DL(s, t) = κ2

(s

t

)2
(−iπs)α2t2

(N − 4)

12
ln3
(

s

−t

)

. (2.72)

The eikonal phase in eq. (2.70) can be related to the problem of black hole formation

and the construction of unitary amplitudes in ultrahigh-energy scattering (see [30, 31] and

references therein), a connection which we will discus in a future work.

3 Conclusions

We have calculated the leading double-logarithmic in energy contributions to four-graviton

scattering to all orders in the gravitational coupling. These terms are subleading with

respect to eikonal contributions but important to understand the high energy behaviour of

the scattering amplitudes. Our results are valid for any supergravity as well as for Einstein-

Hilbert gravity. We have used infrared evolution equations which take into account both

ladder and non-ladder topologies. The truncation of our resummation to two loops is in

exact agreement with recent calculations in the literature for N = 4, 5, 6, 8 supergravities.

Our results show a growth with energy for the amplitudes when N < 4, a critical invariance

with the energy for N = 4, and an asymptotic approach to zero when N > 4.
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